Discrete Linear Canonical Transform of Finite Chirps
نویسندگان
چکیده
منابع مشابه
Sampling Rate Conversion in the Discrete Linear Canonical Transform Domain
Sampling rate conversion (SRC) is one of important issues in modern sampling theory. It can be realized by up-sampling, filtering, and down-sampling operations, which need large complexity. Although some efficient algorithms have been presented to do the sampling rate conversion, they all need to compute the N-point original signal to obtain the up-sampling or the down-sampling signal in the tim...
متن کاملEigenfunctions of linear canonical transform
The linear canonical transform (the LCT) is a useful tool for optical system analysis and signal processing. It is parameterized by a 2 2 matrix . Many operations, such as the Fourier transform (FT), fractional Fourier transform (FRFT), Fresnel transform, and scaling operations are all the special cases of the LCT. In this paper, we will discuss the eigenfunctions of the LCT. The eigenfunctions...
متن کاملOptimal Finite-time Control of Positive Linear Discrete-time Systems
This paper considers solving optimization problem for linear discrete time systems such that closed-loop discrete-time system is positive (i.e., all of its state variables have non-negative values) and also finite-time stable. For this purpose, by considering a quadratic cost function, an optimal controller is designed such that in addition to minimizing the cost function, the positivity proper...
متن کاملFourier Transforms of Finite Chirps
Chirps arise in many signal processing applications. While chirps have been extensively studied both as functions over the real line and the integers, less attention has been paid to the study of chirps over finite groups. We study the existence and properties of chirps over finite cyclic groups of integers. In particular, we introduce a new definition of a finite chirp which is slightly more g...
متن کاملIdentiication of Chirps with Continuous Wavelet Transform
Chirps are signals (or sums of signals) that may be characterized by a local (i.e. time-dependent) amplitude and a local frequency. Time-frequency representations such as wavelet representations are well adapted to the characterization problem of such chirps. Ridges in the modulus of the transform determine regions in the transform domain with a high concentration of energy, and are regarded as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Procedia Engineering
سال: 2012
ISSN: 1877-7058
DOI: 10.1016/j.proeng.2012.01.549